WiTAS 2 Certified Temperature Range
The PICO-V2K4 is a WiTAS (Wide Temperature Assurance Service) qualified board with an operating temperature range of -40°F ~ 185°F (-40°C ~ 85°C), meaning it was more than capable of high-level functionality within the harsh environment of the power station. This also meant that the testing and maintenance robot was unrestricted in its deployment setting, being ruggedized and impervious to humid, indoor settings, but also conducive to outdoor use.
AMD Ryzen™ V2000 Embedded Processing Performance
With up to 8 cores and 16 threads of processing power, sophisticated Zen 2 x86 core architecture, and 7nm process technology, the PICO-V2K4’s AMD Ryzen™ V2000 series CPU provided the application with a unique leap in both performance and power-efficiency, particularly on the PICO-ITX form factor. This high-performance computing meant the PICO-V2K4 could process and analyze camera and sensor data quickly, and provide accurate equipment defect and abnormality detection.
Integrated Functionality
Equipped with an AMD Ryzen™ V2000 processor, LPDDR4x system memory, and up to 128GB of NVMe storage onboard, the PICO-V2K4 had all core facets required for deployment integrated, comprehensively meeting the needs of the application without additional components. Further, the board contained a wealth of connectors to provide the robot with peripheral device function, such as two USB 3.2 Gen 2 running at 10Gbps for infrared cameras, four COM ports for LIDAR sensor support, and four simultaneous displays courtesy of HDMI, DP via USB Type-C, and either LVDS or eDP interfaces. The integrity of the defect information returned to the station’s data center was also maintained via onboard TPM 2.0, preventing information security breaches.
Impact
By implementing a robotic solution to address the safety requirements of their equipment, the power station saw huge benefits to their daily operations. Not requiring a human worker to be physically present to perform its safety checks reduced occupational health concerns, and eliminated the exposure of workers to potential hazards. Additionally, the robot’s sophisticated architecture gave the power station’s equipment inspections a greater degree of accuracy, reducing the potential for errors all while making the process more efficient.
On a broader scale, the success of this application revealed that Industry 4.0 solutions have the potential to revolutionize industrial safety practices on a generational scale, providing disaster prevention frameworks to high-stakes, vital industries.