The widespread adoption of remote healthcare solutions began as a temporary measure introduced to curtail the transmission of COVID-19. However, due to its effectiveness, telemedicine has evolved to become a routine facet of healthcare provision for practitioners across specialties. Curiously though, one area that has thus far not seen remote solutions implemented is emergency care.
In Taiwan, healthcare authorities wanted to change this, with the objective of using smart healthcare solutions to reduce the number of ambulance patients being declared dead on arrival (DOA) when they reach hospitals. The authorities identified that when patients in critical condition are transported to hospital for emergency care, the difference between life and death can come down to a matter of minutes. Therefore, they paired with a large telecommunications provider to enable emergency services workers to perform more complex medical interventions en route to the emergency room, with the remote assistance of doctors already at the hospital.
Application Requirements
The proposed system would utilize a gateway system located in the ambulance, which would act as a conduit between ambulance personnel and doctors at the hospital. Cameras connected to the system would provide live images of the patient’s condition to the doctors, which would be received via tablets. Using the hospital-side tablet, the doctors would communicate with emergency services workers in the ambulance to guide them on the medical interventions required based on the patient’s condition. Both the healthcare authorities and their telecommunications partner recognized that there were several key attributes that the computer needed in order to make this two-way communication system feasible.
Low-Latency
With lives at stake, it was vital that any solution be able to transmit the necessary data with speed and minimal latency so doctors could provide guidance to ambulance personnel during ongoing crises, and to respond immediately in the event of adverse developments or patient deterioration.
Strong Processing Power
Along with high-bandwidth data transmission, the images relayed to the doctors had to be of the highest quality, to avoid misdiagnosis or difficulties recognizing signs of imminent complications. Therefore, the solution would require a CPU with high processing power, ensuring support for more sophisticated peripheral cameras and the rendering of high-resolution images obtained from them.